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Abstract. We compute autocorrelation functions from nonlinear Fokker-Planck equations that describe
nonlinear families of Markov diffusion processes and illustrate this approach for the Plastino-Plastino
Fokker-Planck equation related to the Tsallis entropy.

PACS. 05.20.-y Classical statistical mechanics – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion

Nonlinear Fokker-Planck equations have been applied in
various fields such as neuro- and biophysics [1–6], human
movement sciences [7–9], the theory of reentrant phase
transitions, laser arrays, and electronic circuitry, [10–13],
the physics of polymer fluids [14], and astrophysics [15,16].
So far, research has primarily been focused on the study
of the process distributions defined by nonlinear Fokker-
Planck equations while little attention has been paid to
the study of correlation functions. Correlation functions,
however, contain indispensable information about stochas-
tic processes. In what follows, we will show how to assess
this information in general and in the special case of a
model proposed by Plastino and Plastino.

We consider systems described by a random variable
X(t) ∈ Ω defined on a phase space Ω. Let X be dis-
tributed like u(x) at an initial time t0. Then, we assume
that the probability density P (x, t; u) = 〈δ(x − X(t))〉
of the systems satisfies for t = t0 the initial condition
P (x, t0; u) = u(x) and for t ≥ t0 the nonlinear Fokker-
Planck equation

∂

∂t
P (x, t; u) = − ∂

∂x
D1(x, t, P )P +

∂2

∂x2
D2(x, t, P )P . (1)

We further assume that for solutions of equation (1) the
drift and diffusion coefficients D1 and D2 can be regarded
as first and second Kramers-Moyal coefficients of a (non-
linear) family of Markov diffusion processes [17]. In this
case, the initial distribution u is used as a label that de-
scribes the family members and the transition probability
density P (x, t|x′, t′; u) of the family of Markov diffusion
processes satisfies

∂

∂t
P (x, t|x′, t′; u) = − ∂

∂x
D1(x, t, P (x, t; u))P (x, t|x′, t′; u)

+
∂2

∂x2
D2(x, t, P (x, t; u))P (x, t|x′, t′; u). (2)
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Joint probability densities can be computed from
P (x, t; u) and P (x, t|x′, t′; u). For example, we have

P (x, t; x′, t′; u) = P (x, t|x′, t′; u)P (x′, t′; u),
P (x, t; x′, t′; x′′, t′′; u) =
P (x, t|x′, t′; u)P (x′, t′|x′′, t′′; u)P (x′′, t′′; u) (3)

for t ≥ t′ ≥ t′′. Alternatively, the family of Markov diffu-
sion processes is described by the Ito-Langevin equation

d
dt

X(t) = D1(x, t, P )|x=X(t) +
√

D2(x, t, P )
∣
∣
∣
x=X(t)

Γ (t),

(4)
where Γ is a Langevin force with 〈Γ 〉 = 0 and
〈Γ (t)Γ (t′)〉 = 2δ(t − t′) [18]. For details, see [17]. Next,
let us define the autocorrelation functions

Cmn(t, t′) = 〈Xm(t)Xn(t′)〉 . (5)

Multiplying equation (2) with P (x′, t′; u), we obtain

∂

∂t
P (x, t; x′, t′; u) =

− ∂

∂x
D1(x, t, P (x, t; u))P (x, t; x′, t′; u)

+
∂2

∂x2
D2(x, t, P (x, t; u))P (x, t; x′, t′; u). (6)

From equation (6) an evolution equation for Cmn can be
obtained and reads

∂

∂t
Cmn(t, t′) = m

〈
Xn(t′)

[
xm−1D1(x, t, P )

]
x=X(t)

〉

+m(m − 1)
〈
Xn(t′)

[
xm−2D2(x, t, P )

]
x=X(t)

〉
. (7)
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Likewise, we find that in the stationary case the correla-
tion function Cmn(z) = 〈Xm(t + z)Xn(t)〉st satisfies

d
dz

Cmn(z) = m
〈
Xn(t)

[
xm−1D1(x, t, Pst)

]
x=X(t+z)

〉

st

+ m(m − 1)
〈
Xn(t)

[
xm−2D2(x, t, Pst)

]
x=X(t+z)

〉

st
.

(8)

If the right hand sides of equations (7) and (8) depend
only on autocorrelation functions of lower order, that is,
on functions Cn′m′

with n′ ≤ n and m′ ≤ m, then we deal
with a closed set of evolution equations from which the
autocorrelation functions Cnm can be computed. Let us
illustrate this point by an example.

Plastino and Plastino proposed the nonlinear Fokker-
Planck equation [19]

∂

∂t
P (x, t; u) =

∂

∂x

dU0(x)
dx

P + Q
∂2

∂x2
P q . (9)

Equation (9) can be written as a free energy
Fokker-Planck equation [20] of the form ∂P/∂t =
(∂/∂x){P (∂/∂x)δF/δP}, where F denotes the free en-
ergy measure F = U − QSq that involves the linear
internal energy functional U [P ] = 〈U0(X)〉 and the one-
parametric entropy Sq[P ] = (1 − q)−1

∫
[P q − P ]dx pro-

posed by Tsallis [21,22]. Equation (9) and modifications of
it have extensively been studied, see [23–32] and references
therein. The drift and diffusion coefficients of equation (9)
read D1(x, t, P ) = −dU0(x)/dx and D2(x, t, P ) = QP q−1.
In what follows, we restrict ourselves to consider solu-
tions P (x, t; u) of equation (9) for which D′

2(x, t, u) =
D2(x, t, P ) can be regarded as the second Kramers-Moyal
coefficient of Markov diffusion processes with transition
probability densities described by

∂

∂t
P (x, t|x′, t′; u) =

∂

∂x

dU0(x)
dx

P (x, t|x′, t′; u)

+Q
∂2

∂x2
P q−1(x, t; u)P (x, t|x′, t′; u) . (10)

Stochastic processes described by equations (9) and (10)
can alternatively be obtained from the Ito-Langevin

d
dt

X(t) = − dU0(x)
dx

∣
∣∣
∣
X(t)

+
√

Q P (q−1)/2(x, t; u)
∣
∣∣
X(t)

Γ (t),

(11)
see also [23]. In what follows, we will consider a parabolic
potential U0(x) = γx2/2. Then, for q = 1 equations (9)
and (10) define an Ornstein-Uhlenbeck processes [18]. For
q ∈ (1/3, 1) equation (10) has the stationary distribu-
tion [33]

Pst(x) =
Dst

[
1 + γ(1 − q)x2/[2qQ Dq−1

st ]
]1/(1−q)

(12)

that describes a power law

Pst(x) ∝ |x|
− 2

1 − q (13)

for |x| → ∞. Here, Dst is given by Dst =
[γ/(2qQz2

q)]
1/(1+q), where zq is defined by zq =√

π/(1 − q)Γ [(1+q)/[2(1−q)]]/Γ [1/(1−q)]. The mean of
the stationary solution vanishes, 〈X〉st = 0, and the vari-
ance Kst is given by Kst = [2qQz

(1−q)
q /γ]2/(1+q)/(3q − 1)

and is finite for q ∈ (1/3, 1). Consequently, in the station-
ary case equation (10) becomes

∂

∂t
P (x, t|x′, t′; Pst) = γ

∂

∂x
xP (x, t|x′, t′; Pst)

+QDq−1
st

∂2

∂x2

[
1 +

γ

2qQ Dq−1
st

(1 − q)x2

]
P (x, t|x′, t′; Pst).

(14)

We read off from equation (14) that in the stationary case
and for q ∈ (1/3, 1) the diffusion coefficient D2(x, t, P ) =
QP q−1 can indeed be regarded as the second Kramers-
Moyal coefficient of a Markov diffusion process. From
equation (14) one can derive evolution equations for the
stationary autocorrelation functions that correspond to
special cases of equation (8). For example, we find

d
dz

C11(z) = −γC11(z) (15)

for C11(z) = 〈X(t + z)X(t)〉st and

d
dz

C22(z) = −γ(3q − 1)
q

[
C22(z) − 〈

X2
〉2

st

]
(16)

for C22(z) =
〈
X2(t + z)X2(t)

〉
st

. Solving these equations
for the respective initial conditions, we get

C11(z) =
〈
X2

〉
st

exp{−γz} (17)

and

C22(z) =
〈
X2

〉2

st
+

[〈
X4

〉
st
− 〈

X2
〉2

st

]
exp

{
−γ(3q − 1)

q
z

}

(18)
with

〈
X2

〉
st

= Kst. The amplitude of the exponential
function in equation (18) is semi-positive because we have〈
X4

〉
st
− 〈

X2
〉2

st
=

〈
[X2 − 〈

X2
〉
]2

〉
st

≥ 0. Consequently,
the autocorrelation function C22(z) decays monotonically
from C22(0) =

〈
X4

〉
st

to limz→∞ C22(z) =
〈
X2

〉2

st
= K2

st.
Next, let us compare the analytical results obtained

from the Fokker-Planck description with numerical results
obtained from simulations of the Ito-Langevin equation
(11). In general, we solve the Ito-Langevin equation (4)
for D′

1(x, t, u) = D1(x, t, P ) and D′
2(x, t, u) = D2(x, t, P )

by means of the Euler forward scheme [18]

X l
n+1 = X l

n +∆t D′
1(X

l
n, tn, u)+

√
D′

2(X l
n, tn, u)

√
∆t wl

n .

(19)
Here, the variables X l(t) denote realization of X(t), time
is given by tn = n∆t + t0 with n = 0, 1, 2, . . . and wl

n

are the realizations of random numbers wn satisfying 〈wn〉
and 〈wiwk〉 = 2δik [18]. The coefficients D′

1(X
l
n, tn, u) and
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D′
2(X

l
n, tn, u), in turn, are computed from the realizations

X l
n with l = 1, . . . , L by means of

D′
1(x, tn, u) = D1

(

x, tn,
1
L

L∑

l=1

δ(x − X l
n)

)

,

D′
2(x, tn, u) = D2

(

x, tn,
1
L

L∑

l=1

δ(x − X l
n)

)

(20)

because of P (x, t; u) = 〈δ(x − X(t))〉. Finally, we exploit
the relation

δ(x − x′) =
1√

2π∆x
exp

{

−1
2

[
x − x′

∆x

]2
}

, (21)

which holds in the limit ∆x → 0 [34]. Then, equation (20)
reads

D′
1(x, tn, u) =

D1

(

x, tn,
1√

2π∆xL

L∑

l=1

exp

{

−1
2

[
x − X l

n

∆x

]2
})

,

D′
2(x, tn, u) =

D2

(

x, tn,
1√

2π∆xL

L∑

l=1

exp

{

−1
2

[
x − X l

n

∆x

]2
})

.

(22)

Our simulation scheme based on equations (19) and (22)
becomes exact in the limit ∆t → 0, L → ∞, and ∆x → 0
(where first the limit ∆x → 0, second the limit L → ∞,
and third the limit ∆t → 0 has to be carried out). There-
fore, L should correspond to a large number, whereas ∆x
and ∆t should correspond to small numbers. Figure 1
shows the stationary distribution of the Plastino-Plastino
Fokker-Planck equation as obtained from the analytical
result (12) and a simulation of the Langevin equation (11).
Note that the tails of the power-law distribution (12) be-
come straight lines in the log-log plot shown in Figure 1.
Figures 2 and 3 show the correlations functions C11(z) and
C22(z) as obtained from our analytical considerations on
the nonlinear Fokker-Planck equation (9) and as obtained
by simulations of the Langevin equation (11).

From equation (7) or alternatively from equation (10)
we can also derive nonstationary autocorrelation functions
of the Plastino-Plastino model. For example, substituting
D1 = −γx into equation (7) we find

∂

∂t
C11(t, t′) = −γC11(t, t′), (23)

which eventually gives us

C11(t, t′) =
〈
X2(t′)

〉
exp{−γ(t − t′)}. (24)

By means of equation (24), we can compute the auto-
correlation function C11 for every pair (t, t′) with t ≥ t′
provided that the value of the second moment

〈
X2

〉
at

Fig. 1. Solid line: exact solution (12). Diamonds: Pst computed
from the Langevin equation (11) for U0 = γx2/2, γ = 0.1,
Q = 1.0, q = 0.8.

Fig. 2. Autocorrelation function C11 computed from equa-
tion (17) (solid line) and from the Langevin equation (11) with
U0 = γx2/2 (diamonds). Parameters as in Figure 1.

Fig. 3. Autocorrelation function C22 computed from equa-
tion (18) (solid line) and from the Langevin equation (11) with
U0 = γx2/2 (diamonds). Parameters as in Figure 1.

time t′ is given. For example, equation (9) is solved by the
transient solution [33]

P (x, t; δ(x − x0)) =
D(t)

[1+[zqD(t)]2(1 − q)[x−M1(t)]2]
1/(1−q)

(25)

with

M1(t) = x0 exp{−γ(t− t0)}, (26)

R
ap

id
e 

N
o

te

R
ap

id
 N

o
te



142 The European Physical Journal B

Fig. 4. Solid line: autocorrelation function C11(t, t′) for t′ = 6
computed from equations (24, 26, 28). Dashed line: second mo-
ment

〈
X2(t)

〉
computed from equations (26) and (28). Dia-

monds: C11(t, t′) for t′ = 6 and
〈
X2(t)

〉
obtained by solving

numerically the Langevin equation (11) with U0 = γx2/2. For
t < t′ we put C11 = 0. Parameters: x0 = −1, t0 = 0, and see
Figure 1.

D(t) =
[

γ

2qQ

1
[zq]

2

1
1 − exp{−(1 + q)γ(t − t0)}

]1/(1+q)

. (27)

and

K(t) =

1
3q−1

[
2qQ[zq](1−q)

γ
(1−exp{−(1 + q)γ(t−t0)})

]2/(1+q)

.

(28)

Replacing t by t′ in equations (26) and (28), we can com-
pute

〈
X2(t′)

〉
= K(t′) + M2

1 (t′). Substituting this result
into equation (24), we obtain an analytical expression for
C11(t, t′). Figure 4 shows the exact analytical results and
the numerical results for C11(t, t′) and

〈
X2(t)

〉
. The re-

sults are in excellent agreement.
We have derived analytical expressions for autocor-

relation functions of nonlinear Fokker-Planck equations.
In doing so, we have put the theory of nonlinear Fokker-
Planck equations on a more equal footing with the theory
of linear Fokker-Planck equations for which it is known
that analytical expression for autocorrelation functions
can be obtained. Moreover, the results derived here can be
used for model selection. If we observe a particular (time-
dependent) distribution function P , then there are usually
several models at our disposal that can reproduce the dis-
tribution function. These models will most probably yield
different correlation functions. As a result, by comparing
not only the distribution functions but also the correlation
functions of models with experimental data, we might be
able to select a model out of a set of models that all do
their job equally well as far as the reproduction of a dis-
tribution function is concerned. Since different models of-
ten involve different mechanisms, the study of correlations
functions can be used to uncover the physical mechanisms
involved in experimental observations.
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